7th International Conference on Computational Mechanics for Spatial Structures

April 2-4, 2012
Sarajevo, Bosnia and Herzegovina

Editors:
A. Ibrahimbegovic, S. Dolarevic, M. Hrasnica, M. Madzarevic and M. Zlatar
IASS-IACM 2012: 7th International Conference on Computational Mechanics for Spatial Structures:

EDITORIAL

A. Ibrahimbegovic¹, S. Dolarevic², M. Hrasnica², M. Madzarevic², M. Zlatar²

¹Ecole Normale Supérieure, LMT-Cachan, 61 avenue du président Wilson, 94235 Cachan, France, adnan.ibrahimbegovic@ens-cachan.fr
²University of Sarajevo, Gradjevinski fakultet, ulica patriotske lige 30, 71000 Sarajevo, Bosnia and Herzegovina, gfsa@gf.unsa.ba

Abstract: IASS-IACM 2012 is the seventh in series of International Conferences that allow very fruitful exchange of ideas between the members of two scientific communities with very active associations, IASS: International Association for Shell and Spatial Structures and IACM: International Association for Computational Mechanics. This conference is organized jointly by Ecole Normale Supérieure-Cachan (represented by LMT-Cachan), France and University of Sarajevo (represented by GF Sarajevo), Bosnia and Herzegovine.

1 OBJECTIVES OF IASS-IACM 2012

It is fair to say that the challenge of constructing spatial structures (including the primadonnas among them, the shells) was initially the main driving force for scientific developments and creation of IASS (by Eduardo Torroja in 1959) and of IACM (by Olek Zienkiewicz in 1981). Nowadays, these fields have expanded tremendously beyond what was initially meant, thanks to the success of powerful computational tools and methods (interestingly enough, there is still not a perfect shell element, even for linear problems!). It is also fair to say that many of the same people, who initially contributed to early developments, were among those who first recognized the potential of the developed tools for tackling different application fields outside of the initial scope. In fact, the current scientific research is very much driven by the applications and many challenging problems that the society at large thrusts upon the scientists and engineers to solve are very much interdisciplinary (e.g. structure durability problem that involves structural mechanics, fluids, heat transfer, optimization, identification, probability …).

The main goal of IASS-IACM 2012 Conference is to provide a critical assessment of the current knowledge and indicate new challenges in the computational modelling of spatial structures, which is in general the most important component of any particular inter-disciplinary problem we might be interested in. Here can be presented the research on spatial structures coming form a number of domains of application: Aerospace, Civil or Mechanical Engineering, or yet Material Science (very much like various domains of expertise of co-organizer, Laboratory of Mechanics and Technology-Cachan). The common ground for all problems of this kind from the viewpoint of scientific contents, which also justifies putting them on the same basis and addressing them within the same meeting, is provided by the computational methods, be they destined for analysis, design or testing.

The IASS-IACM 2012 will also address the issue on what is the role of a spatial structure specialist in the present inter-disciplinary scientific research? Moreover, a special session/debate will be organized on what is the best educational/ training program for nurturing the next generation of specialists.
2 INTERNATIONAL ADVISORY BOARD
Abel J., President IASS / Chairman 6th IASS-IACM 2008
Combescure A., President CSMA, France
Mang H., Chairman Congress ECCOMAS 2012
Ohayon R., First President CSMA, France
Papadrakakis M., President ECCOMAS / Chairman 4th IASS-IACM 2000
Ramm E., Chairman 5th IASS-IACM 2005
Verbic B.†, Academy of Sciences and Arts of BH
Wriggers P., Vice-President IACM Europe-Africa
Yagawa G., President IACM

3 INTERNATIONAL SCIENTIFIC COMMITTEE
Please consult website: http://www.gf.unsa.ba/iass-iacm-2012/

4 LOCAL ORGANIZING COMMITTEE
Lecturers GF Sarajevo: Curic Jelena, Hajdo Emina, Ademovic Naida,
Imamovic Ismar, Skejic Adis, Balic Anis and Medic Senad

5 IASS-IACM 2012 TOPICS
The papers for any of Conference themes are dealing with topics such as: structural models (cables, beams, plates, shells); finite element technology; innovative analysis methods; structural and multi-body dynamics; instability and buckling; contact with structures; fracture and localized failure; constitutive material models; fabrics, laminates and composites; reinforced-concrete structures; metallic structures; inflatable and deployable structures; structure-fluid interaction problems; structural optimization and form-finding; mathematical foundations; biomechanics structures; industrial applications ...

6 IASS-IACM 2012 CONFERENCE VENUE

Fig. 1 – Conference venue/ exact address: GF-Sarajevo, ulica patriotske lige 30
6 Sponzoring Organizations and Institutions of IASS-IACM 2012:

International Association for Shell and Spatial Structures

International Association for Computational Mechanics

Computational Structural Mechanics Association

Association Calcul de Structures et Modélisation

Ecole Normale Supérieure Cachan

The University of Sarajevo/ Faculty of Civil Engineering

dgik BiH Society of Structural Engineers BiH
Contents

1 PLenary Lectures 1

1.1 Composite Structures with Long Fiber Reinforcement: Failure Models for Predicting Crack-Spacing and Opening
A. Ibrahimbegovic .. 2

1.2 Hidden Conditions for Bifurcation Buckling in a Computational Mechanics Setting
H. Mang ... 12

1.3 Vibrations of Structures Containing Fluids: Sloshing and Surface Tension Effects
R. Ohayon .. 14

1.4 Do We Still Need Shell Formulations?
E. Ramm .. 16

1.5 Mesh Generation System: 3D Body with Cracks and Large Scale Unstructured Hybrid Grid
M.W. Yuan .. 18

2 Other Lectures 20

2.1 Meshless Local Buckling Analysis of Steel Beams with Web Opening
A.R.Z. Abidin and B.A. Izzuddin .. 21

2.2 Pushover Analysis of a Typical Masonry Residential Building in Bosnia and Herzegovina
N. Ademovic, M. Hrasnica and M. Zlatar 23

2.3 Crack Pattern Pushover Analysis vs Time History Analysis of a Typical Multi-Story Building
N. Ademovic and M. Hrasnica .. 28

2.4 The Shells of the Miami Stadium: Synergy Between Form, Force and Environment
S. Adriaenssens, R. Hernandez et al. 33

2.5 Numerical Analyzing of Induction Sintering of Powder Metal Bearings
M.B. Akgul et al. ... 37
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>ADAPTIVE MULTISCALE STRATEGY FOR EFFICIENT COMPUTATION OF COMPLEX HETEROGENEOUS STRUCTURES TILL FAILURE</td>
<td>M. Asali, A. Ibrahimbegovic and H.G. Matthies</td>
<td>39</td>
</tr>
<tr>
<td>2.7</td>
<td>THE ENERGY DISSIPATION IN METAL MEMBRANE UNDER CYCLIC LOADING</td>
<td>B. Ayhan, P. Jehel and A. Ibrahimbegovic</td>
<td>41</td>
</tr>
<tr>
<td>2.8</td>
<td>NEW NUMERICAL ALGORITHM TO FACILITATE A PRECAST, SEGMENTAL APPROACH TO THIN SHELL CONCRETE STRUCTURES</td>
<td>S. Bagrianski and S. Adriaenssens</td>
<td>45</td>
</tr>
<tr>
<td>2.9</td>
<td>NUMERICAL DYNAMIC TESTS OF MASONRY-INFILLED REINFORCED CONCRETE FRAMES</td>
<td>G. Baloevic, J. Radovic and A. Harapin</td>
<td>49</td>
</tr>
<tr>
<td>2.10</td>
<td>GEOMETRICALLY EXACT STRUCTURAL MODELS FOR LARGE DEFORMATION PROBLEMS IN FLEXIBLE MULTI-BODY DYNAMICS</td>
<td>P. Betsch, N. Sanger and C. Hesch</td>
<td>53</td>
</tr>
<tr>
<td>2.11</td>
<td>ISOGEOMETRIC ANALYSIS OF THIN-WALLED STRUCTURES</td>
<td>M. Bischoff and E. Echter</td>
<td>56</td>
</tr>
<tr>
<td>2.12</td>
<td>DYNAMICAL ANALYSIS OF STIFFENED PLATES USING THE COMPOUND STRIP METHOD</td>
<td>A. Borkovic, N. Mrda and S. Kovacevic</td>
<td>58</td>
</tr>
<tr>
<td>2.13</td>
<td>SPATIALLY-CURVED COMPOSITE BEAMS: NUMERICAL ANALYSIS AND EXPERIMENTAL RESULTS</td>
<td>M.A. Bradford, X. Liu and R.E. Erkmen</td>
<td>63</td>
</tr>
<tr>
<td>2.14</td>
<td>EMBEDDED DISCONTINUITIES FOR ULTIMATE LOAD COMPUTATION OF REINFORCED CONCRETE FRAMES</td>
<td>D. Brancherie, B.H. Pham, L. Davenne and A. Ibrahimbegovic</td>
<td>65</td>
</tr>
<tr>
<td>2.15</td>
<td>ESTIMATION OF DISCRETIZATION ERROR IN PLATE COMPUTATIONS BY EQUILIBRIATED RESIDUAL METHOD</td>
<td>B. Brank, U. Bohinc and A. Ibrahimbegovic</td>
<td>70</td>
</tr>
<tr>
<td>2.16</td>
<td>INTELLIGENT OPTIMAL DESIGN OF SPATIAL STRUCTURES</td>
<td>T. Burczyski and M. Szczerpanik</td>
<td>72</td>
</tr>
<tr>
<td>2.17</td>
<td>3D-SHELL MATHEMATICAL MODELS AND FINITE ELEMENTS: FROM MATHEMATICAL AND PHYSICAL INSIGHT TO APPLICATION EXAMPLES</td>
<td>D. Chapelle and K.J. Bathe</td>
<td>76</td>
</tr>
<tr>
<td>2.18</td>
<td>FORM FINDING AND ANALYSIS OF Framed Shells</td>
<td>V. Dias de Silva</td>
<td>77</td>
</tr>
<tr>
<td>2.19</td>
<td>NUMERICAL ANALYSIS OF NAILS DRIVEN IN A PYROCLASTIC SILTY SANDS</td>
<td>G. Di Fonzo</td>
<td>79</td>
</tr>
<tr>
<td>2.20</td>
<td>MODEL REDUCTION IN FRAME STRUCTURES FOR ZERO AXIAL DEFORMATION</td>
<td>S. Dolarevic and S. Medic</td>
<td>80</td>
</tr>
</tbody>
</table>
2.21 NONLINEAR DAMAGE ANALYSIS OF A RC BEAM-COLUMN CONNECTION
N. Dominguez and J. Perez-Mota 84

2.22 INSTABILITY OF THIN HYPER-ELASTIC SPACE MEMBRANES UNDER PRESSURE LOADS
A. Eriksson and A. Nordmark 86

2.23 MODELLING AND HOMOGENIZATION OF TECHNICAL TEXTILES
S. Fillep, J. Mergheim and P. Steinmann 88

2.24 DEPLOYMENT ANALYSIS OF AN ANTIPRISMATIC SNAP-THROUGH TYPE CYLINDRICAL SPACE TRUSS AND PROPOSAL FOR A POP-UP BRIDGE CONSTRUCTION
N. Friedman, K. Gidofalvy, I. Hegedus et al. 90

2.25 THE EMBEDDED UNIT-CELL APPROACH FOR MULTI-SCALE ANALYSIS OF LOCAL RESPONSE
E. Gal and M. Grigorovich 93

2.26 HOMOGENIZATION OF MATERIAL HAVING INCLUSIONS SURROUNDED BY LAYERS USING THE XFEM
E. Gal and H. Waisman 97

2.27 HOMOGENIZATION OF CONCRETE USING THE LATTICE DISCRETE PARTICLE MODEL (LDPM)
E. Gal, R. Razakehani and G. Cusatis 99

2.28 MODIFIED MOVING FORCE MODEL
D. Gavric .. 103

2.29 NECKING LIMITS OF CONOID MEMBRANE STRUCTURES WITH VARIABLE STRESS RATIO
S. Gellin and R.M.O. Pauletti 108

2.30 DYNAMIC ANALYSIS OF FLEXIBLE FALLING ROCK PROTECTION BARRIERS
C. Gentilini, L. Govoni, F. Ubertini et al. 112

2.31 THE APPLICATION OF QUATERNIONS TO PROBLEMS OF MORPHOLOGY OF CURVILINEAR BARS
E. Godzinskyi and V. Gordeiev 116

2.32 DYNAMIC ANALYSIS OF GRANCAREVO ARCH DAM
N. Grgic, J. Radnic and A. Harapon 120

2.33 THE ROLEX LEARNING CENTER AT EPFL LAUSANNE
H. Grohmann, K. Bollinger and A. Weilandt 123

2.34 NUMERICAL MODELLING OF INTERACTION BETWEEN STIFF REINFORCING ELEMENTS AND GRANULAR BACKFILL UNDER PULLOUT CONDITIONS
H. Grubic, A. Skejic and A. Balic 127

2.35 EFFECT OF REINFORCEMENT RATIO ON THE CREEP BUCKLING BEHAVIOR OF HIGH STRENGTH CONCRETE PANELS
Y. Huang and E. Hamed 131
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.36</td>
<td>ON THE DYNAMIC RESPONSE OF DISCRETE SINGLE-LAYER SPHERICAL DOMES</td>
<td>A. Handruleva, V. Matuski and K. Kazakov</td>
<td>135</td>
</tr>
<tr>
<td>2.37</td>
<td>COMPUTATIONAL MORPHOGENESIS OF FREE FORM RE-INFORCED CONCRETE SHELLS AND ITS APPLICATION IN PRACTICE - TESHIMA ART MUSEUM</td>
<td>H. Hamada, H. Komatsu, M. Sasaki and H. Ohmori</td>
<td>140</td>
</tr>
<tr>
<td>2.38</td>
<td>STRUCTURAL CHALLENGES OF HISTORICAL STONE MASONRY BUILDINGS IN BOSNIA AND HERZEGOVINA</td>
<td>M. Hrasnica and S. Medic</td>
<td>144</td>
</tr>
<tr>
<td>2.39</td>
<td>A FLEXIBLE APPROACH TO OPTIMIZE SINGLE-LAYER GRID STRUCTURES</td>
<td>A. Hofmann, C. Preisinger et al.</td>
<td>148</td>
</tr>
<tr>
<td>2.40</td>
<td>MECHANICAL CHARACTERIZATION OF WOOD: AN INTEGRATIVE APPROACH RANGING FROM NANOSCALE TO STRUCTURAL SCALE</td>
<td>K. Hofstetter and J. Eberhardsteiner</td>
<td>150</td>
</tr>
<tr>
<td>2.41</td>
<td>NUMERICAL VERSUS EXPERIMENTAL FAILURE STUDIES OF CONCRETE SHELL STRUCTURES</td>
<td>G. Hofstetter, B. Valentini and H. Lehar</td>
<td>153</td>
</tr>
<tr>
<td>2.42</td>
<td>3D CONTACT PROBLEMS WITH LARGE LOAD-STEPS BASED ON THE COVARIANT DESCRIPTION</td>
<td>R. Izi, A. Konyukhov and K. Schweizerhof</td>
<td>154</td>
</tr>
<tr>
<td>2.43</td>
<td>THE INTRODUCTION OF A NONLINEAR FEM MODEL OF CONNECTIONS INTO A GLOBAL ANALYSIS OF FRAMES</td>
<td>I. Imamovic, E. Mesic and E. Hajdo</td>
<td>156</td>
</tr>
<tr>
<td>2.44</td>
<td>FOUNDATION ANALYSIS OF THE TALL BUILDING NEXT TO THE LOW-RISE BUILDING</td>
<td>E. Jahic and S. Dolarevic</td>
<td>160</td>
</tr>
<tr>
<td>2.45</td>
<td>COMPUTER SIMULATION OF CRACK TRAJECTORIES IN CONCRETE</td>
<td>H. Jasarevic, S. Gagula and I. Hot</td>
<td>164</td>
</tr>
<tr>
<td>2.46</td>
<td>A NOTE ON RELATIONSHIP BETWEEN FIXED-POLE AND MOVING-POLE APPROACHES IN STATIC AND DYNAMIC ANALYSIS OF NON-LINEAR SPATIAL BEAM STRUCTURES</td>
<td>G. Jelenic, M. Gacesa and M. Saje</td>
<td>168</td>
</tr>
<tr>
<td>2.47</td>
<td>REVISITING THE FAILURE MODE OF A RC HYPERBOLIC COOLING TOWER, CONSIDERING CHANGES OF MATERIAL AND GEOMETRIC PROPERTIES</td>
<td>X. Jia and H. Mang</td>
<td>170</td>
</tr>
<tr>
<td>2.48</td>
<td>FAILURE ANALYSIS OF STRUCTURAL ELEMENTS BY EMBEDDED DISCONTINUITY CONCEPT</td>
<td>M. Jukic, J. Duje, A. Ibrahimbegovic, B. Brank</td>
<td>173</td>
</tr>
<tr>
<td>2.49</td>
<td>RIGID-PLASTIC BEAM UNDER IMPACT LOADING</td>
<td>A. Khan, L. Smith and B.A. Izzuddin</td>
<td>175</td>
</tr>
</tbody>
</table>
2.50 EFFICIENT COUPLING ALGORITHM FOR FREE-SURFACE FLOW IMPACTING COMPLEX STRUCTURES
C. Kassiotis, A. Ibrahimbegovic and H.G. Matthies 184
2.51 ROBUSTNESS ANALYSIS OF SPATIAL TIMBER STRUCTURES
P.H. Kirkegaard and N. Balfroid ... 186
2.52 MULTIPHYSICS MODELING OF STEEL CONTINUOUS CASTING
S. Koric, B.G. Thomas et al. .. 187
2.53 FEM MODELLING OF SPATIAL STRUCTURES IN TEST-BY-LOAD PROCEDURES
D. Kovacevic, V. Radonjanin and M. Malesev 191
2.54 SPECTRAL METHOD FOR MOVING MASS ANALYSIS OF PLATES
I. Kozar and N. Toric-Malic .. 193
2.55 SOLAR UPDRAFT POWER PLANTS AND SOLAR CHIMNEYS (POWER TOWERS)
W.B. Kraetzig, M. Graffmann et al. .. 197
2.56 MECHANICAL PROPERTIES AND VISUAL INSPECTION OF FAILURE SURFACES OF RECYCLED CONCRETE AGGREGATE
E. Krasny ... 207
2.57 FRACTURE ENERGY, COMPRESSIVE AND FLEXURE STRENGTHS OF RECYCLED CONCRETE AGGREGATE
E. Krasny ... 210
2.58 THE ISSUE OF CORROSION OF CEMENT CONCRETE
A. Kurtovic .. 213
2.59 FORMULATION OF SLENDER RODS BASED ON NURBS
C. Lazaro, S. Monleon and A. Domingo 218
2.60 NON-LINEAR FORMULATION OF SLENDER RODS BASED ON THE EULER-BERNOULLI MODEL
C. Lazaro, S. Monleon and A. Domingo 220
2.61 THE BENDING-GRADIENT PLATE THEORY FOR THICK PLATES, APPLICATION TO A BEAM LATTICE SPECTRAL METHOD FOR MOVING MASS ANALYSIS OF PLATES
A. Lebee and K. Sab ... 224
2.62 2D VERSUS 3D MULTI-SCALE THERMO-HYDRO-MECHANICAL MODELLING OF CONCRETE AT HIGH TEMPERATURE
T.T.H. Le, F. Meftah and H. Boussa 225
2.63 FORM FINDING OF FREE FORM SHELL STRUCTURES BY USING RESPONSE SURFACE METHODOLOGY AND OPTIMIZATION
M. Liu, M. Xing et al. ... 226
2.64 SYSTEM IDENTIFICATION AND MODEL UPDATE OBSERVER-KALMAN AND GENETIC ALGORITHM APPROACH
Z. Lozina, D. Sedlar and D. Vucina ... 227
2.65 SOLVING THE PROBLEM OF ROD STABILITY ACCORDING TO THE PROGRESSIVE APPROACH METHOD
Z. Magljic ... 231

2.66 COMPARISON OF THREE ALTERNATIVE SOLUTIONS OF AN OVERPASS IN A DEEP CUT
H. Mahmutagic, K. Imamovic and E. Lakota 233

2.67 THE STRUCTURAL DESIGN OF THE OCTAGONAL ROOM OF NERO’S DOMUS AUREA: AN EARLY EXAMPLE OF DOME IN OPUS CAEMENTICIUM
F.M. Martines and R. Perucchio .. 238

2.68 EXPERIMENTAL AND NUMERICAL TESTS OF SOME RC PLATES
D. Matesan and J. Radnic .. 242

2.69 SYSTEM IDENTIFICATION IN A PROBABILISTIC SETTING
H. G. Mattheis .. 246

2.70 AN EQUILIBRIUM SHELL ELEMENT FOR FOLDED PLATE STRUCTURES
E.A.W. Maunder, B. Izzuddin and A.C.A. Ramsay 248

2.71 INFLUENCE OF EQUILIBRIUM CURVES INTERACTION ON THE IMPERFECTION SENSITIVITY OF SHALLOW TRUSS
S. Medic, D. Uros and M. Lazarevic 251

2.72 A MOLECULAR STRUCTURAL MECHANICS (MSM) MODEL FOR THE STATIC BEHAVIOR OF CARBON NANOTUBES
R. Merli, C. Lazaro and S. Monleon 255

2.73 ELASTO-PLASTIC DESIGN AND SECOND-ORDER ANALYSIS OF STEEL FRAMES
E. Mesic .. 257

2.74 IEM-METHOD: VECTOR INTERACTION
E. Mikic .. 267

2.75 FE ANALYSIS OF MEMBRANES BASED ON FLAGSHYP PROGRAM
S.R. Moghadam and I.M. Kani ... 271

2.76 A PROBABILISTIC APPROACH FOR THE DESIGN OF STRUCTURAL MASONRY
N. Mojsilovic .. 273

2.77 LOCAL STATIC INDETERMINACY, PSEUDO-FORCES AND STRESS EVALUATION IN HYPER-BEAM MODELS
S. Monleon, C. Lazaro and A. Domingo 277

2.78 A THERMO-DAMAGE COUPLING MODEL FOR CONCRETE STRUCTURE
V.M. Ngo, A. Ibrahimbegovic and D. Brancherie 281

2.79 SLDLT: A MODIFICATION OF THE CHOLESKY DECOMPOSITION TO SPEED UP MONTE CARLO SIMULATIONS
A. Notin, J.L. Dulong, P. Villon et al. 283
2.80 A NOVEL COMPRESSION TECHNIQUE OF APERIODIC RANDOM MICROSTRUCTURES

J. Novak, A. Kucerova and J. Zeman 294

2.81 EFFECTS OF PRE-LOADING ON THE MODAL CONTRIBUTIONS TO THE RESPONSE OF CYLINDRICAL SHELLS SUBJECTED TO EARTHQUAKE LOADING

S. Ostovari Dailamani and J.G.A. Croll 296

2.82 SHELL AND SOLID-SHELL FINITE ELEMENT MODELS FOR THE SIMULATION OF BLADE CUTTING OF THIN SHEETS

U. Perego and M. Pagani 297

2.83 A NEW ROD MODEL FOR THE FOLDING AND DEPLOYMENT OF TAPE SPRINGS WITH HIGHLY DEFORMABLE CROSS-SECTION

E. Picault, S. Bourgeois, B. Cochelin, C. Hochard et al. 299

2.84 STATIC AND DYNAMIC ANALYSIS OF THE OLD STONE BRIDGE IN MOSTAR

J. Radnic, A. Harapin, M. Smilovic et al. 301

2.85 A REPARAMETERIZATION APPROACH FOR REDUCING DIMENSIONALITY IN SHAPE OPTIMIZATION

B. Raghavan, P. Breitkopf, and P. Villon 305

2.86 COMPUTATIONAL TREATMENT OF THE STABILITY OF MULTI-LAYERED CARBON NANOPARTICLES

F.G. Rammerstorfer, M. Todt, M.A. Hartmann et al. 307

2.87 PUSHOVER ANALYSIS OF RC BRIDGE STRUCTURE USING EUROCODE 8 REGULATIONS

J. Ristik and E. Dumova-Jovanoska 310

2.88 COMPUTATIONAL SEQUENTIALLY LINEAR ANALYSIS OF RC PLATES AND SHELLS

J. Rots, M.A.N. Hendriks, A.T. Slobbe and A.V. van de Graaf . 312

2.89 EVOLUTIONARY COMPUTATIONAL STRUCTURAL ORNAMENTS: FROM PATTERN FORMATION TO SELF-ORGANIZING 4D PLANAR ORNAMENTS

E. Ruffo Calderon Dominguez 315

2.90 TESTING OF RAPIDLY ASSEMBLED LARGE SCALE EMERGENCY SHELTERS

E. Saliklis and E. Arens 322

2.91 EFFICIENT MODELLING OF THICKNESS IMPERFECTION

IN CARBON FIBER REINFORCED PLASTIC CYLINDERS

G.L. Schueller and M. Broggi 323

2.92 HIGHLY EFFICIENT SOLID-SHELL FINITE ELEMENT FOR EXPLICIT DYNAMIC ANALYSIS USING SYMBOLIC PROGRAMMING

K. Schweizerhof, S. Mattern and C. Schmied 327

2.93 A NOVEL FINITE-ELEMENT-TYPE APPROXIMATION FOR SOLID MECHANICS APPLICATIONS IN A 3D SETTING

M. Selimoti and M.M. Rashid 329
2.94 ANALYSIS OF REINFORCED CONCRETE SHALLOW CONICAL SHELLS BY THE KINEMATIC METHOD OF LIMIT EQUILIBRIUM IN THE GEOMETRICALLY NONLINEAR STATEMENT
V. Shugaev 331
2.95 APPLYING THE SOLID-SHELL CONCEPT TO THIN FIBRE COMPOSITE STRUCTURES
J-W. Simon, B. Stier and S. Reese 336
2.96 3D FEM MODEL FOR ASEISMIC ANALYSIS OF THE MA-SONRY BUILDINGS
G. Simonovic and B. Verbic 338
2.97 COUPLED ANALYSIS OF MEMS DEVICES AND ELECTRO-ACTIVE HYDROGELS BASED ON FINITE-DEFORMATION BEAM THEORY
I. Sokolov, S. Krylov and I. Harari 343
2.98 MESHLESS FORMULATION FOR THIN PLATE ANALYSIS USING STRESS AND DISPLACEMENT INTERPOLATIONS
J. Soric, J. Hoster and T. Jarak 344
2.99 INCORPORATING OPTIMIZATION IN THE FORCE DENSITY METHOD FOR THE FORM FINDING OF FREE-FORM STRUCTURES
H. Tamai .. 346
2.100 STRUCTURAL LATTICES GENERATED FROM RANDOMLY DISORDERED GRAPHS
R. Tarczewsk and W. Bober 350
2.101 ON OBJECTIVITY OF FINITE ROTATION BEAM FORMU-LATION AND ITS FINITE ELEMENT IMPLEMENTATION
R.L. Taylor and A. Ibrahimbegovic 354
2.102 GOAL-ORIENTED A POSTERIORI ERROR ESTIMATION FOR THE FINITE ELEMENT METHOD APPLIED TO CON-TACT PROBLEMS
N.Q. Thai and A. Ibrahimbegovic 371
2.103 STIFFENED PLATE UNDER THE INFLUENCE OF 3D VE-HICLE MODEL
N. Toric-Malic and I. Kozar 372
2.104 DEFORMATIONS OF STONE ROMAN BRIDGE IN STARI MAJDAN
Em. Trozic, D. Ceric and En. Trozic 376
2.105 THE CONSEQUENCES OF ACTION OF LECHATE AND COR-ROSION IN REINFORCED CONCRETE CONSTRUCTION OF BRIDGE
Em. Trozic, D. Ceric and En. Trozic 379
2.106 EFFECTS OF LONG-TERM ACTION OF ICES SWELLING, IN THE PROTECTIVE WALL, KARST, OF PONOR DEPRES-SION
Em. Trozic, D. Ceric and En. Trozic 383
2.107 APPLYING THE CONCEPTS OF THE LCA METHODOLOGY ON SPACE STRUCTURES
 D. Tzourmakliotou ... 385

2.108 OPTIMIZATION OF AN ORIGINAL STEEL SPACE TRUSS
 JOINT USING CONTACT ANALYSIS OF THE BOLT CONNECTION
 T. Vacev .. 387

2.109 ON THE NUMERICAL ANALYSIS OF SHELL STRUCTURES
 WITH A CONSISTENTLY COUPLED TWO-SCALE MODEL
 W. Wagner and F. Gruttmann 389

2.110 ELASTO-PLASTIC TRUSS OPTIMIZATION USING GENETIC
 ALGORITHM
 H. Wang and H. Ohmori 391

2.111 CONTROL OF TORSIONAL ROD VIBRATIONS BY PIEZOELECTRIC
 TRANSDUCERS
 Ch. Zehetner, M. Zellhofer and M. Krommer 395

2.112 A MULTISCALE MODEL FOR THE FINITE ELEMENT ANALYSIS
 OF STEEL FIBER REINFORCED CONCRETE
 Y. Zhan and G. Meschke 404

2.113 FREE-FORM DESIGN OF TENSEGRITY STRUCTURES BY
 DYNAMIC RELAXATION METHOD
 J.Y. Zhang and M. Ohsaki 406